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General Information
● In-class exam on Oct 29 7:30pm-8:45pm
● 75 mins
● Close book, you may bring calculator
● I will join online, TAs will invigilate
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Recap (Lecture 1: P1-P32)
● Neural Network Basics

○ MLP
○ Forward and backward propagation of MLP
○ Weight decay, dropout
○ The training optimizer: SGD, RMSProp, Adam
○ Multistage learning rate scheduler

● Lecture 0 is not covered.
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Recap (Lecture 2: P1-P71)
● Conv2D operation

○ How the computation is performed
○ Input dimension, weight dimension, output dimension
○ Computational cost

● BatchNorm
○ Parameter folding-in during inference

● ResNet, MobileNet, ShuffletNet, SqueezeNet, DenseNet
○ Depthwise Separable Conv 
○ Groupwise Convolution
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Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K
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Xc

X: HW ✕ B ✕ C

B

Yc

B

Y: HW ✕ B ✕ C

Batch 
Normalization

Ioffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv 
preprint arXiv:1502.03167 (2015).

Batch Normalization

● Batch Normalization (BatchNorm) is a technique used in deep learning to improve the training stability 
and performance of neural networks.
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Batch Normalization

● For each channel c, we have:
○ Xc: (HW x B)
○ μc and δc are the mean and standard deviation of Xc.
○ αc and βc are learnable parameters
○ αc, βc, μc, δc are scalers

● Overall, we have:
○ μ, δ, α and β all have a length of of C
○ μ, δ, α and β are all fixed during the inference
○ μ, δ are statistics based on the training dataset

Xc

X: HW ✕ B ✕ C

B

x
For each c∈C
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Depthwise Separable Convolution

......

Output Feature 
maps

H

W

C

E

F

M

Input Feature 
maps

● Number of MACs: K✕K✕C✕E✕F + M✕C✕E✕F
● Storage cost: 32✕(C✕H✕W+C✕K✕K+C✕E✕F+M✕C+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

...

Depthwise
Filters

K
K

Depthwise
Conv

...

...

Pointwise
Filters

Pointwise 

Conv

M

1
1

...
...

...

E

F

CC

C
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Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural 
networks." Communications of the ACM 60.6 (2017): 84-90.

H

W

C

H

W

C

● The original MAC: E✕F✕K✕K✕C✕M

Conv
Conv

K
E

FK



10

Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks." 
Communications of the ACM 60.6 (2017): 84-90.

H

W

C

H

W

C

● Group size = 2
● Each group of feature maps within the input only convolved with partial weight kernels.
● This will lead to a large saving on memory consumption and computational cost.
● The number of MAC: E✕F✕K✕K✕C✕M/G

Conv ConvE

F

E

F
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Recap (Lecture 3: P1-P69, P77-P79)
● Transformers

○ How the computation is performed and why
○ Multi-headed attention, FFN
○ LayerNorm, RMSNorm, GeLU
○ Positional embedding, Word embedding

● Vision Transformer
○ How to convert image into visual tokens

● LLM
○ Prefilling, decoding
○ KV cache

● SSL
○ Basics
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Self-Attention Block
● Given input x, the first step in calculating self-attention is to create 

three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT
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Vision Transformer
● Transformer architecture can also be applied over the computer vision tasks.

224

224

    Conv 2D

3

Reshape
(B, 768, 14, 14)

(B, 196, 768)

Concat

(B, 197, 768)

(B, 197, 768)

+(B, 197, 768)
nn.param

layernorm

take [ :, 0]

(B, 197, 768)

(B, 768)

(B, 1000)

(B, 197, 768)

Linear

(B, 197, 768)

Block

Block

(B, 197, 768)

…
(part 1) (part 2) (part 3)
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FFN

Decoder

Decoder

Linear &
Softmax

Embedding

Normalization

Normalization

SA

Input
linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

● We need to buffer the v and k for later usage.

Transformers as a Generative AI Tool
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GPT-2: Prefilling

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”
● During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the 

KV vectors into the memory.

ki,j Key vector for ith token in jth layer

vi,j Value vector for ith token in jth layer

(1✕E)

(1✕E
)

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2

KV cache
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Why KV Cache Saves Computation?

● During the decoding phase, new tokens are continuously generated and must be 
processed using the buffered K and V vectors to generate subsequent tokens.

● Without a KV cache, all previous K and V vectors must be recomputed, resulting in 
significant computational overhead.

Q

E
1

KT

L-1 1

✖

q

L

A L,l

L-
1

L AE
L

kl kL V
1

✖ 1
L-1

y

vL

E
vl

E

L
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Recap (Lecture 4: P1-P46, P50-P65, P68-P79)
● Computational cost saving with pruning

○ CNN & Transformer
● Sparse matrix encoding

○ Bitmap, Run-length encoding, COO
● General pruning techniques

○ Magnitude pruning, gradient-based, Hessian-based pruning
○ Lasso
○ Taxonomy of Pruning
○ Network Slimming, N:M sparsity
○ Cascade effect of pruning

● Transformer pruning 
○ Token pruning
○ Head pruning
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Convolution with Sparse Weight

● Number of MACs≥(1-p)×(1-q)×M×C×R×S×E×F
● Input pruning can also reduce the computations.
● Sparse input and weight matrices can be stored more efficiently, which helps minimize 

memory storage.

… …

R
Number of 
nonzero MACs
≥(1-p)(1-q)RS

If p percent of the weights are zeros, 
and q percent of input are zeros

S
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Sparse Matrices Encodings
● Efficient encoding scheme for sparse matrix storage.

○ Bitmap
○ Run Length Encoding (RLE)
○ Coordinate format (COO)
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Recap (Lecture 5: P1-P65)
● Basic Data Formats 

○ Fixed point (INT), Floating point (FP), Block floating point (BFP)
● Quantization

○ Unsymmetrical & Symmetrical
○ Why fixed, FP, BFP & logarithm quantization can save computation?

● STE 
● Taxonomy of Quantization 
● Qunatization during training

○ Stochastic quantization
● Learnable adaptive quantization scheme 
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Fixed-Point Format (Symmetrical)
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

 ● Have a uniform representation power within the clipping range.
● All the computations can be performed using 

x

Q(x)
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Floating Point Arithmetic

● Have better representation power for values with small magnitudes.
● How to convert a real number x to FP representation?

x = |x|   s = sign(x)
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When to Quantize?
Post-training quantization (PTQ)

Train with full 
precision

Quantize the 
weights

Quantization-aware Training (QAT)

● PTQ has lower computational cost, but accuracy is also lower.
● For the model which is expensive to train (LLM), PTQ is applied to facilitate their 

implementations.

Quantize the 
weight/activation

Resultant model

Until 
convergence

Train the 
current model



24

How to compute           ?

Another Way to Look at Quantization

W

A

✖ Y Z
✖

Q

Original flow Flow with quantization

W’W

A

Y Z
ReLU

ReLU

Y = WA, Z = ReLU(Y)
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Straight Through Estimator (STE)
● Staircase function has a derivative of 0 at most of the 

values. This will makes the DNN not trainable.
● We instead use STE to estimate the gradient of a 

non-differentiable quantized function in the backward 
pass.

● During the forward pass, apply quantization, 
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems 
30 (2017).
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Recap (Lecture 6: P1-P35, P56-P63)

● Distillation
○ Feature-Based Knowledge Distillation
○ Online distillation
○ Self distillation
○ Multi-teacher, multi-student, cross-modal

● Low-rank Decomposition
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Knowledge Distillation Basics
● Transferring knowledge from a large and complex model or set of models to a 

single, smaller model that can be effectively deployed in real-world scenarios 
with practical limitations.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint 
arXiv:1503.02531 (2015).
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Response-Based Knowledge Distillation

Training
dataset

Teacher 
Model

Student 
Model

0.2

0.1

0.1

…

0.1

0.2

0.0
…

Distillation 
loss

1

0

0

…

Cross-entropy
loss

label

In
pu

t 1-c

Total 
loss

Soft labels ● During the training 
process, only the 
weights within the 
student model got 
updated.

● The teacher model 
can be either 
pretrained or trained 
together with student.

● c tends to be close to 
1: ~0.9.

Hard labels

c
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KL Divergence

● In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted DKL(P∥Q), is 
a measure of how much a model probability distribution Q is different from a true 
probability distribution P, where both P and Q are discrete.

● If P(x) = Q(x) for all x, then the KL divergence equals 0.
● Otherwise, KL divergence is greater than 0.
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Recap (Lecture 7: P1-P41)

● Outlier Distribution in LLM
○ Massive activation
○ Channelwise outlier

● Quantization and smoothing techniques for large models
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Outlier Study: CLIP Activations
● Outliers with large magnitudes 

appear at positions x1, y1, and 
y5, referred to as massive 
activations.

X1   X2   X3   X4   

X5   X8   X9   y1   

y2   y3   y4   y5   
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Outlier Study: CLIP Activations
● 3D plots of x2 across 

layers.

● x2 exhibits channel wise 
outlier

Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  
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Impact of Massive Activation

Raman, Rahul, Khushi Sharma, and Sai Qian Zhang. "Rethinking the Outlier Distribution in Large Language Models: An 
In-depth Study." arXiv preprint arXiv:2505.21670 (2025).

● The truncation of massive activation will cause the significant accuracy degradation 
of the LLM.

● Massive activations also occur in other types of foundation models that utilize 
attention-based architectures.
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Recap (Lecture 8: P1-P45)

● Efficient training of DNNs
○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
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Example Question

1. How many multiply-accumulate (MAC) operations are required for conventional Conv2D?
2. If p% of the filters within the weight are pruned (meaning every elements within the weight filters are set to zero), 

how does this affect the computational cost of the convolution? Additionally, what is the new total of MAC 
operations for the convolution? 

3. Will removing weight filters reduce the computational cost of the subsequent Conv2D layers, assuming that only 
ReLU layers exist between consecutive Conv2D layers? Why?

Figure below describes a standard Conv2D operation where the input has dimensions B x C x H x W, and the weight filters 
have sized M x C x 3 x 3. Here, B represents the batch size, C is the number of input channels, and H and W denote the 
spatial dimensions of the input feature map. Assume a padding size and stride of 1. No bias terms is involved.


