NYU

Midterm Coverage



General Information

In-class exam on Oct 29 7:30pm-8:45pm
/5 mins

Close book, you may bring calculator

| will join online, TAs will invigilate
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Recap (Lecture 1: P1-P32)

e Neural Network Basics

o MLP
Forward and backward propagation of MLP
Weight decay, dropout
The training optimizer: SGD, RMSProp, Adam
Multistage learning rate scheduler
e Lecture O is not covered.

O
O
O
O
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Recap (Lecture 2: P1-P71)

e Conv2D operation
o How the computation is performed
o Input dimension, weight dimension, output dimension
o Computational cost

e BatchNorm
o Parameter folding-in during inference

e ResNet, MobileNet, ShuffletNet, SqueezeNet, DenseNet
o Depthwise Separable Conv
o Groupwise Convolution
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Computational Cost: Standard Convolution

Input Feature Output Feature
maps maps

® Number of MACs: BXxMxKxKxCxExF

Filters

e Storage cost:
- 32x(MxCxKxK+BxCxHxW+BxMxE xF)

B: batch size

C: number of input channels

H,W: size of the input feature maps
M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps
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Batch Normalization

Batch
Normalization =
as)

A
>

Y_-HW x B x C

e Batch Normalization (BatchNorm) is a technique used in deep learning to improve the training stability
and performance of neural networks.

U 8 I L B loffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv
NY A A preprint arXiv:1502.03167 (2015).




Batch Normalization

Batch Norm Y, =
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e For each channel c, we have:
Xc: (HW x B)

X _
M al: For each ceC

Uc and &c are the mean and standard deviation of Xc.

ac and Bc are learnable parameters
ac, PBe, Uc, Oc are scalers
e Overall, we have:

M, ©, a and B all have a length of of C
M, ©, a and B are all fixed during the inference
M, O are statistics based on the training dataset



Depthwise Separable Convolution

Pointwise
Input Feature Depthwise Filters Output Feature
maps \&C - O maps
Filters \0\ P
C. Depthwise C . °0 0(\\1 1 @
Conv :,>
’ @
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e Number of MACs: KxKxCxExF + MxCxExF
e Storage cost: 32X (CxHXW+CxKxK+CxExXF+MxC+MxEXF)
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Group Convolution

e The original MAC: EXFXKxKxCxM
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Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural

networks." Communications of the ACM 60.6 (2017): 84-90.



Group Convolution

C C 1
' \ Conv '__| —>E Conv
H — H —

NYU SAI LAB

Group size = 2
Each group of feature maps within the input only convolved with partial weight kernels.
This will lead to a large saving on memory consumption and computational cost.
The number of MAC: ExXFxKxKxCxM/G

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks."
Communications of the ACM 60.6 (2017): 84-90.
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Recap (Lecture 3: P1-P69, P77-P79)

e Transformers

o How the computation is performed and why
o Multi-headed attention, FFN
o LayerNorm, RMSNorm, GeLU
o Positional embedding, Word embedding
e Vision Transformer

o How to convert image into visual tokens

o LLM
o Prefilling, decoding
o KV cache

e SSL
o Basics
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Self-Attention Block

e Given input x, the first step in calculating self-attention is to create
three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).
o (BLE) x (ExE) —» (BxLxE)
e The second step in calculating self-attention. This will compute the
attention score between each pair of input tokens.
o QKT—(B, LxE) = (BExL)— (B, LxL)
e Scale and normalize the score using softmax.
o  Softmax(QKT) — (B,LxL)
e Multiply each value vector by the softmax score.
o  Softmax(QKT) » V
o (B,LxL) = (B,LxE)— (B,LxE)
e Pass the result to the linear layer, sum with the input.
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Vision Transformer

e Transformer architecture can also be applied over the computer vision tasks.

(B, 197, 768)

(B, 197, 768) (B, 197, 768)
nn.param B 197 768)

(B, 196, 768)

(B, 768, 14, 14) Block
:j
(B, 197, 768)
224 u

224

NYUSAILAB|  (part 1) (part 2)

(B, 1000)

Linear

(B, 768)

(B, 197, 768)

layernorm

(B, 197, 768)
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Transformers as a Generative Al Tool

Reshape

~\
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e \We need to buffer the v and k for later usage.
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GPT-2: Prefilling

A

Linear &
Softmax

_IZV cache

s | i

Decoder -~

Decoder

+ '
Embedding

\ A J
1

“How are you”

Bl Key vector for ith token in jtn layer
(1xXE)

I \
ik k.2 ) A {) Bl Value vector for ith token in jtn layer

(1xE
)

e During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the
KV vectors into the memory.
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Why KV Cache Saves Computation?

e During the decoding phase, new tokens are continuously generated and must be
processed using the buffered K and V vectors to generate subsequent tokens.

e Without a KV cache, all previous K and V vectors must be recomputed, resulting in
significant computational overhead.

NYU SAI LAB
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Recap (Lecture 4: P1-P46, P50-P65, P68-P79)

e Computational cost saving with pruning

O

CNN & Transformer

e Sparse matrix encoding

O

Bitmap, Run-length encoding, COO

e (General pruning techniques

@)
@)
@)
@)

O

Magnitude pruning, gradient-based, Hessian-based pruning
Lasso

Taxonomy of Pruning

Network Slimming, N:M sparsity

Cascade effect of pruning

e Transformer pruning

@)
©)
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Token pruning
Head pruning
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Convolution with Sparse Weight

If p percent of the weights are zeros,
and q percent of input are zeros

Number of
~~. nonzero MACs
2(1-p)(1-9)RS

Ripv = [ —
S

e Number of MACs2(1-p)*(1-q)xMxCxRxSxExF
e Input pruning can also reduce the computations.
e Sparse input and weight matrices can be stored more efficiently, which helps minimize

memory storage.
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Sparse Matrices Encodings

e Efficient encoding scheme for sparse matrix storage.
o Bitmap

o Run Length Encoding (RLE)
o Coordinate format (COOQO)
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Recap (Lecture 5: P1-P65)

e Basic Data Formats
o Fixed point (INT), Floating point (FP), Block floating point (BFP)
e Quantization
o Unsymmetrical & Symmetrical
o Why fixed, FP, BFP & logarithm quantization can save computation?

o STE
e Taxonomy of Quantization

e Qunatization during training
o Stochastic quantization
e Learnable adaptive quantization scheme

NYU SAI LAB
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Fixed-Point Format (Symmetrical)

e How to convert a number x to INT representation?

O O O O O

Set the clipping range: (-L, L), bitwidth: b

Compute the scale: s = 2L /(2" — 2)

Clip the input x: z. = Clip(x, L, —L)

Calculate the INT representation: x;,,; = round(z./s)
Rescale: Ty = STint

Q(x)A

i

e Have a uniform representation power within the clipping range.
e All the computations can be performed using Z;,;

NYU SAI LAB
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Floating Point Arithmetic

IIII
...... 0 1

I
I
2 3

A

e Have better representation power for values with small magnitudes.
e How to convert a real number x to FP representation?

X =|[x| s =sign(x)
. T
a = |logax| e = a -+ bias mZF—l
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When to Quantize?

Post-training quantization (PTQ) Quantization-aware Training (QAT)
L
| [ Quantize the |
Train "‘."t.h full weight/activation .
| precision | \ " Until
) [ R ( Y . convergence
Quantize the Train the
weights ) | current model

!

e PTQ has lower computational cost, but accuracy is also lower.
e For the model which is expensive to train (LLM), PTQ is applied to facilitate their
implementations.

Resultant model
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Another Way to Look at Quantization

W

\
/

Original flow

®)—

Flow with quantization

a

-

Y = WA, Z = ReLU(Y)
8L 0L 8Z dY

oW  8Z oY oW
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Straight Through Estimator (STE)
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Staircase function has a derivative of 0 at most of the
values. This will makes the DNN not trainable.

We instead use STE to estimate the gradient of a
non-differentiable quantized function in the backward
pass.

oW’

=1
ow

During the forward pass, apply quantization,
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems

30 (2017).
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Recap (Lecture 6: P1-P35, P56-P63)

e Distillation

o Feature-Based Knowledge Distillation

o Online distillation

o Self distillation

o Multi-teacher, multi-student, cross-modal
e Low-rank Decomposition

NYU SAI LAB
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Knowledge Distillation Basics

e Transferring knowledge from a large and complex model or set of models to a
single, smaller model that can be effectively deployed in real-world scenarios
with practical limitations.

Teacher Model

NYU SAI LAB Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint 7

arXiv:1503.02531 (2015).




Response-Based Knowledge Distillation

Training

dataset

label

hnput

Soft labels
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0.2
Teacher 01y
Model

0.1

0.1
Student 02| __ |
Model

0.0
1
0

Hard labels

0

Distillation

N

Cross-entropy

!—o !—_‘
an o

During the training
process, only the
weights within the
student model got
updated.

The teacher model
can be either
pretrained or trained
together with student.
c tends to be close to
1: ~0.9.



KL Divergence

e In mathematical statistics, the Kullback—Leibler (KL) divergence, denoted DkL(P // Q), is

a measure of how much a model probability distribution Q is different from a true
probability distribution P, where both P and Q are discrete.

DxL(P | Q) =) P(x) log( E;)

zeX

e If P(x) = Q(x) for all x, then the KL divergence equals O.
e Otherwise, KL divergence is greater than 0.
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Recap (Lecture 7: P1-P41)

e OQutlier Distribution in LLM
o Massive activation
o Channelwise outlier
e Quantization and smoothing techniques for large models

NYU SAI LAB
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Outlier Study: CLIP Activations

® Outliers with large magnitudes X X2 X3 X4
appear at positions x1, y1, and
y5, referred to as massive
activations.
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Outlier Study: CLIP Activations

Layer 1 Layer 2 Layer 3 Layer 4

e 3D plots of x2 across
layers.
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Impact of Massive Activation

LLaMA3.2-3B LLaMA3.1-8B LLaMA2-13B GPT-2 Qwen2.5-7B
Intervention WikiText C4 | WikiText C4 | WikiText C4 | WikiText C4 | WikiText c4
Original 5.567 10.790 6.941 9.046 4.355 6.405 14.795 19.460 6.520 11.773
TMAs to mean aty; 112411175 21046.82 | 21281.49  1301562.25| 130156225 6469.42 | 14.841 19.560 | 71216.17  66588.86
TMAs to zeroes at y;  1138151.23 21951.41 | 21601.10  1302018.53| 1309211.61 712832 | 14911 19.928 | 71835.61  67518.35

e The truncation of massive activation will cause the significant accuracy degradation
of the LLM.

e Massive activations also occur in other types of foundation models that utilize
attention-based architectures.

NYU SAI LAB

Raman, Rahul, Khushi Sharma, and Sai Qian Zhang. "Rethinking the Outlier Distribution in Large Language Models: An
In-depth Study." arXiv preprint arXiv:2505.21670 (2025).
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Recap (Lecture 8: P1-P45)

e Efficient training of DNNs
o Efficient computing
o Efficient storage

e Parameter efficient finetuning
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Example Question

Figure below describes a standard Conv2D operation where the input has dimensions B x C x H x W, and the weight filters

have sized M x C x 3 x 3. Here, B represents the batch size, C is the number of input channels, and H and W denote the
spatial dimensions of the input feature map. Assume a padding size and stride of 1. No bias terms is involved.

Conv2D

C.
g = . G
w 3ﬁj
Output

H. ;= Feature
maps

Input feature maps  Weight filters

How many multiply-accumulate (MAC) operations are required for conventional Conv2D?
If p% of the filters within the weight are pruned (meaning every elements within the weight filters are set to zero),
how does this affect the computational cost of the convolution? Additionally, what is the new total of MAC

operations for the convolution?
3. Wil removing weight filters reduce the computational cost of the subsequent Conv2D layers, assuming that only

RelLU layers exist between consecutive Conv2D layers? Why?

NYU SAI LAB
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