
Midterm Coverage

2

General Information
● In-class exam on Oct 29 7:30pm-8:45pm
● 75 mins
● Close book, you may bring calculator
● I will join online, TAs will invigilate

3

Recap (Lecture 1: P1-P32)
● Neural Network Basics

○ MLP
○ Forward and backward propagation of MLP
○ Weight decay, dropout
○ The training optimizer: SGD, RMSProp, Adam
○ Multistage learning rate scheduler

● Lecture 0 is not covered.

4

Recap (Lecture 2: P1-P71)
● Conv2D operation

○ How the computation is performed
○ Input dimension, weight dimension, output dimension
○ Computational cost

● BatchNorm
○ Parameter folding-in during inference

● ResNet, MobileNet, ShuffletNet, SqueezeNet, DenseNet
○ Depthwise Separable Conv
○ Groupwise Convolution

5

Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

6

Xc

X: HW ✕ B ✕ C

B

Yc

B

Y: HW ✕ B ✕ C

Batch
Normalization

Ioffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv
preprint arXiv:1502.03167 (2015).

Batch Normalization

● Batch Normalization (BatchNorm) is a technique used in deep learning to improve the training stability
and performance of neural networks.

7

Batch Normalization

● For each channel c, we have:
○ Xc: (HW x B)
○ μc and δc are the mean and standard deviation of Xc.
○ αc and βc are learnable parameters
○ αc, βc, μc, δc are scalers

● Overall, we have:
○ μ, δ, α and β all have a length of of C
○ μ, δ, α and β are all fixed during the inference
○ μ, δ are statistics based on the training dataset

Xc

X: HW ✕ B ✕ C

B

x
For each c∈C

8

Depthwise Separable Convolution

......

Output Feature
maps

H

W

C

E

F

M

Input Feature
maps

● Number of MACs: K✕K✕C✕E✕F + M✕C✕E✕F
● Storage cost: 32✕(C✕H✕W+C✕K✕K+C✕E✕F+M✕C+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

...

Depthwise
Filters

K
K

Depthwise
Conv

...

...

Pointwise
Filters

Pointwise

Conv

M

1
1

...
...

...

E

F

CC

C

9

Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural
networks." Communications of the ACM 60.6 (2017): 84-90.

H

W

C

H

W

C

● The original MAC: E✕F✕K✕K✕C✕M

Conv
Conv

K
E

FK

10

Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks."
Communications of the ACM 60.6 (2017): 84-90.

H

W

C

H

W

C

● Group size = 2
● Each group of feature maps within the input only convolved with partial weight kernels.
● This will lead to a large saving on memory consumption and computational cost.
● The number of MAC: E✕F✕K✕K✕C✕M/G

Conv ConvE

F

E

F

11

Recap (Lecture 3: P1-P69, P77-P79)
● Transformers

○ How the computation is performed and why
○ Multi-headed attention, FFN
○ LayerNorm, RMSNorm, GeLU
○ Positional embedding, Word embedding

● Vision Transformer
○ How to convert image into visual tokens

● LLM
○ Prefilling, decoding
○ KV cache

● SSL
○ Basics

12

Self-Attention Block
● Given input x, the first step in calculating self-attention is to create

three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) → (B, L✖L)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E)

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT

13

Vision Transformer
● Transformer architecture can also be applied over the computer vision tasks.

224

224

 Conv 2D

3

Reshape
(B, 768, 14, 14)

(B, 196, 768)

Concat

(B, 197, 768)

(B, 197, 768)

+(B, 197, 768)
nn.param

layernorm

take [:, 0]

(B, 197, 768)

(B, 768)

(B, 1000)

(B, 197, 768)

Linear

(B, 197, 768)

Block

Block

(B, 197, 768)

…
(part 1) (part 2) (part 3)

14

FFN

Decoder

Decoder

Linear &
Softmax

Embedding

Normalization

Normalization

SA

Input
linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

● We need to buffer the v and k for later usage.

Transformers as a Generative AI Tool

15

GPT-2: Prefilling

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”
● During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the

KV vectors into the memory.

ki,j Key vector for ith token in jth layer

vi,j Value vector for ith token in jth layer

(1✕E)

(1✕E
)

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2

KV cache

16

Why KV Cache Saves Computation?

● During the decoding phase, new tokens are continuously generated and must be
processed using the buffered K and V vectors to generate subsequent tokens.

● Without a KV cache, all previous K and V vectors must be recomputed, resulting in
significant computational overhead.

Q

E
1

KT

L-1 1

✖

q

L

A L,l

L-
1

L AE
L

kl kL V
1

✖ 1
L-1

y

vL

E
vl

E

L

17

Recap (Lecture 4: P1-P46, P50-P65, P68-P79)
● Computational cost saving with pruning

○ CNN & Transformer
● Sparse matrix encoding

○ Bitmap, Run-length encoding, COO
● General pruning techniques

○ Magnitude pruning, gradient-based, Hessian-based pruning
○ Lasso
○ Taxonomy of Pruning
○ Network Slimming, N:M sparsity
○ Cascade effect of pruning

● Transformer pruning
○ Token pruning
○ Head pruning

18

Convolution with Sparse Weight

● Number of MACs≥(1-p)×(1-q)×M×C×R×S×E×F
● Input pruning can also reduce the computations.
● Sparse input and weight matrices can be stored more efficiently, which helps minimize

memory storage.

… …

R
Number of
nonzero MACs
≥(1-p)(1-q)RS

If p percent of the weights are zeros,
and q percent of input are zeros

S

19

Sparse Matrices Encodings
● Efficient encoding scheme for sparse matrix storage.

○ Bitmap
○ Run Length Encoding (RLE)
○ Coordinate format (COO)

20

Recap (Lecture 5: P1-P65)
● Basic Data Formats

○ Fixed point (INT), Floating point (FP), Block floating point (BFP)
● Quantization

○ Unsymmetrical & Symmetrical
○ Why fixed, FP, BFP & logarithm quantization can save computation?

● STE
● Taxonomy of Quantization
● Qunatization during training

○ Stochastic quantization
● Learnable adaptive quantization scheme

21

Fixed-Point Format (Symmetrical)
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale:
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale:

 ● Have a uniform representation power within the clipping range.
● All the computations can be performed using

x

Q(x)

22

Floating Point Arithmetic

● Have better representation power for values with small magnitudes.
● How to convert a real number x to FP representation?

x = |x| s = sign(x)

23

When to Quantize?
Post-training quantization (PTQ)

Train with full
precision

Quantize the
weights

Quantization-aware Training (QAT)

● PTQ has lower computational cost, but accuracy is also lower.
● For the model which is expensive to train (LLM), PTQ is applied to facilitate their

implementations.

Quantize the
weight/activation

Resultant model

Until
convergence

Train the
current model

24

How to compute ?

Another Way to Look at Quantization

W

A

✖ Y Z
✖

Q

Original flow Flow with quantization

W’W

A

Y Z
ReLU

ReLU

Y = WA, Z = ReLU(Y)

25

Straight Through Estimator (STE)
● Staircase function has a derivative of 0 at most of the

values. This will makes the DNN not trainable.
● We instead use STE to estimate the gradient of a

non-differentiable quantized function in the backward
pass.

● During the forward pass, apply quantization,
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems
30 (2017).

26

Recap (Lecture 6: P1-P35, P56-P63)

● Distillation
○ Feature-Based Knowledge Distillation
○ Online distillation
○ Self distillation
○ Multi-teacher, multi-student, cross-modal

● Low-rank Decomposition

27

Knowledge Distillation Basics
● Transferring knowledge from a large and complex model or set of models to a

single, smaller model that can be effectively deployed in real-world scenarios
with practical limitations.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint
arXiv:1503.02531 (2015).

28

Response-Based Knowledge Distillation

Training
dataset

Teacher
Model

Student
Model

0.2

0.1

0.1

…

0.1

0.2

0.0
…

Distillation
loss

1

0

0

…

Cross-entropy
loss

label

In
pu

t 1-c

Total
loss

Soft labels ● During the training
process, only the
weights within the
student model got
updated.

● The teacher model
can be either
pretrained or trained
together with student.

● c tends to be close to
1: ~0.9.

Hard labels

c

29

KL Divergence

● In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted DKL(P∥Q), is
a measure of how much a model probability distribution Q is different from a true
probability distribution P, where both P and Q are discrete.

● If P(x) = Q(x) for all x, then the KL divergence equals 0.
● Otherwise, KL divergence is greater than 0.

30

Recap (Lecture 7: P1-P41)

● Outlier Distribution in LLM
○ Massive activation
○ Channelwise outlier

● Quantization and smoothing techniques for large models

31

Outlier Study: CLIP Activations
● Outliers with large magnitudes

appear at positions x1, y1, and
y5, referred to as massive
activations.

X1 X2 X3 X4

X5 X8 X9 y1

y2 y3 y4 y5

32

Outlier Study: CLIP Activations
● 3D plots of x2 across

layers.

● x2 exhibits channel wise
outlier

Layer 1 Layer 2 Layer 3 Layer 4

Layer 11 Layer 12 Layer 13 Layer 14

Layer 19 Layer 20 Layer 21 Layer 23

33

Impact of Massive Activation

Raman, Rahul, Khushi Sharma, and Sai Qian Zhang. "Rethinking the Outlier Distribution in Large Language Models: An
In-depth Study." arXiv preprint arXiv:2505.21670 (2025).

● The truncation of massive activation will cause the significant accuracy degradation
of the LLM.

● Massive activations also occur in other types of foundation models that utilize
attention-based architectures.

34

Recap (Lecture 8: P1-P45)

● Efficient training of DNNs
○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning

35

Example Question

1. How many multiply-accumulate (MAC) operations are required for conventional Conv2D?
2. If p% of the filters within the weight are pruned (meaning every elements within the weight filters are set to zero),

how does this affect the computational cost of the convolution? Additionally, what is the new total of MAC
operations for the convolution?

3. Will removing weight filters reduce the computational cost of the subsequent Conv2D layers, assuming that only
ReLU layers exist between consecutive Conv2D layers? Why?

Figure below describes a standard Conv2D operation where the input has dimensions B x C x H x W, and the weight filters
have sized M x C x 3 x 3. Here, B represents the batch size, C is the number of input channels, and H and W denote the
spatial dimensions of the input feature map. Assume a padding size and stride of 1. No bias terms is involved.

